

Discussion: Functional Partial Membership Models

O'Bayes 2022

Luis Carvalho

2022-09-09

• Happy marriage of mixed membership models and functional data analysis!

- Happy marriage of mixed membership models and functional data analysis!
- Functional data analysis (Ramsay and Silverman, 2005): stochastic process $f:\mathcal{T} o\mathbb{R}$, e.g. $f\sim GP(\mu,C)$, square integrable $f\in L^2(\mathcal{T})$, can be *decomposed* as

$$f=\mu+\sum_{p=1}^{\infty}\langle f,\Psi_p
angle \Psi_p$$

where the Ψ_p are eigenfunctions of the covariance operator defined by C

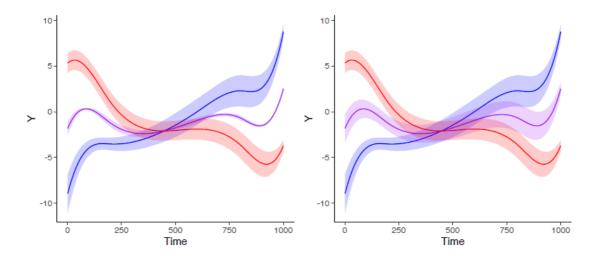
- Happy marriage of mixed membership models and functional data analysis!
- Functional data analysis (Ramsay and Silverman, 2005): stochastic process $f:\mathcal{T} o\mathbb{R}$, e.g. $f\sim GP(\mu,C)$, square integrable $f\in L^2(\mathcal{T})$, can be *decomposed* as

$$f=\mu+\sum_{p=1}^{\infty}\langle f,\Psi_p
angle \Psi_p$$

where the Ψ_p are eigenfunctions of the covariance operator defined by C

• Mixed membership models (Blei *et al*, 2003): for K features $f^{(k)}$, take the mixture

$$f = \sum_{k=1}^K Z_k f^{(k)}$$


where the indicators $Z_k \in (0,1)$ with $\sum_{k=1}^K Z_k = 1$

- Happy marriage of mixed membership models and functional data analysis!
 - Nicely motivated: application to analysis of brain images from children with autism *spectrum* disorder (ASD)

- Happy marriage of mixed membership models and functional data analysis!
 - Nicely motivated: application to analysis of brain images from children with autism *spectrum* disorder (ASD)
 - \circ Multivariate Karhunen-Loève decomposition (Happ and Greven, 2018) using P basis functions and $M \leq KP$ eigenfunctions to approximate the covariance

- Happy marriage of mixed membership models and functional data analysis!
 - Nicely motivated: application to analysis of brain images from children with autism *spectrum* disorder (ASD)
 - \circ Multivariate Karhunen-Loève decomposition (Happ and Greven, 2018) using P basis functions and $M \leq KP$ eigenfunctions to approximate the covariance
 - *Secret sauce*: adaptive regularization via multiplicative gamma process shrinkage prior (Bhattacharya and Dunson, 2011)

- Happy marriage of mixed membership models and functional data analysis!
 - Nicely motivated: application to analysis of brain images from children with autism *spectrum* disorder (ASD)
 - \circ Multivariate Karhunen-Loève decomposition (Happ and Greven, 2018) using P basis functions and $M \leq KP$ eigenfunctions to approximate the covariance
 - *Secret sauce*: adaptive regularization via multiplicative gamma process shrinkage prior (Bhattacharya and Dunson, 2011)

Questions

- Non-identifiability: interesting points were raised, but not fully explored
 - Label switching: details on algorithm under mixed membership? Can a prior on the label configuration space be used instead? Ideal for an objective prior!
 - Orthogonality seems to be essential for identifiability, but it was lifted for computational feasibility in conjunction with the MGPSP. What are the tradeoffs? Were they explored?

Questions

- Model fine-tuning and guarantees:
 - How constraining is the use of the MGPSP in modeling the cross-covariance structure? How are the hyper-parameters specified?
 - \circ How are the dimensions --- K (number of features), P (basis rank), and M (covariance rank) --- defined in practice? Information criteria for K might not be very reliable and overestimate in practice, so maybe another good opportunity for an objective prior!

Questions

• Implementation:

- How feasible is the computation here? Metropolis-within-Gibbs seems to lead to long convergence times, especially under non-identifiability!
- How is the tempering schedule calibrated in practice?