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Questions
Non-identi�ability: interesting points were raised, but not fully explored

Label switching: details on algorithm under mixed membership? Can a prior on
the label con�guration space be used instead? Ideal for an objective prior!

Orthogonality seems to be essential for identi�ability, but it was lifted for
computational feasibility in conjunction with the MGPSP. What are the trade-
o�s? Were they explored?
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Questions
Model �ne-tuning and guarantees:

How constraining is the use of the MGPSP in modeling the cross-covariance
structure? How are the hyper-parameters speci�ed?

How are the dimensions ---  (number of features),  (basis rank), and 
(covariance rank) --- de�ned in practice? Information criteria for  might not be
very reliable and overestimate in practice, so maybe another good opportunity
for an objective prior!
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Questions
Implementation:

How feasible is the computation here? Metropolis-within-Gibbs seems to lead to
long convergence times, especially under non-identi�ability!

How is the tempering schedule calibrated in practice?
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